Data Science: Implementing a Random Forest in Rust.

applied.math.coding
5 min readMay 26, 2023

This story is part of my Data Science series.

Random forests do come in many variations. The common idea is instead building a single tree model, one trains an ensemble of tree model where each has slightly different input parameters. These input parameters for instance could be a random-selected subset of features. Or a random sample from the training data.

Predictions with such an ensemble typically is done by ‘majority voting’ in case of a classification, and averaging in case of a regression.

In this story I aim to present an implementation of a random forest for a classification problem stemming from these data here.

This data base is quite large and thus not suitable for training one single tree from it. For this reason I choose to build an ensemble of trees based on random-selected samples of the training data.

Implementation (Tree):

Before implementing a random forest, we first need to implement a tree model:

--

--

applied.math.coding
applied.math.coding

Written by applied.math.coding

I am a Software Developer - Java, Rust, SQL, TypeScript - with strong interest doing research in pure and applied Mathematics.

No responses yet